GWL/EAP

1/2011

How to Solve a System of Equations using the . . .

Using the nine **coefficients** and the three **constants** in the following system of equations . . .

Work through a series of **Row Operations** to create a **matrix** of the following form:

The **final column** will contain the **three solutions.**

The Format: Begin with all equations in **STANDARD FROM** (**Ax + By + Cz= D**). Then, express the system as a matrix, called the **ARGUMENT MATRIX**.

(x+2y+z=8)	[+1	+2	+1	[+8]	Row 1 – R ₁
$\begin{cases} 2x+y-z=1 \end{cases}$		+1	-1	+1	Row $2 - R_2$
(x+y-2z=-3)		+1	-2	-3	Row 3 – <i>R</i> ₃

The Rules: Consider the three basic **ROW OPERATIONS** (or mathematically "legal" procedures) you can use to achieve a matrix with a **diagonal of 1s**, and 0s for all other coefficients:

- I. SWITCH Interchange any two rows.
- **II.** *MULTIPLY (or DIVIDE)* the elements of any row by a nonzero number.
- III. ADD & REPLACE Add a multiple of one row to a different row; then replace one of these rows with the result.

The Process: Although knowledge of formal methods for solving matrices is helpful (see <u>Gaussian and</u> <u>Gauss-Jordan Elimination</u> in "Solving Systems of Equations" at <u>Paul's Online Math Notes</u>, Lamar University), an intuitive application of row operations—as we demonstrate here—is often sufficient for simpler systems. In any case, working with matrices can be a tedious, error-prone process, so **WRITE OUT ALL STEPS!** *Note that there may be more than one sequence of steps to solve a given matrix.

Phase 1: Since R₁ begins with a 1, our diagonal is already started. To get 0s at the beginning of R₂ and R₃, we can use Row Operation III twice.

 $(-2) \bullet R_1 + R_2 \to R_2$: $[(-2)(1) + 2 = 0 \quad (-2)(2) + 1 = -3 \quad (-2)(1) + -1 = -3 \quad (-2)(8) + 1 = -15]$

 $\begin{array}{c} \text{GWL/EAP} & 1/2011 & \text{LSC-O, Page 2 of 3} \\ (-1) \bullet R_1 + R_3 \Rightarrow R_3 : [(-1)(1) + 1 = 0 & (-1)(2) + 1 = -1 & (-1)(1) + -2 = -3 & (-1)(8) + -3 = -11] \\ \\ R_1 & \begin{bmatrix} +1 & +2 & +1 & +8 \\ 0 & -3 & -3 & -15 \\ 0 & -3 & -3 & -15 \\ +1 & +1 & -2 & -3 \end{bmatrix} \xrightarrow{-1R_1 + R_3} \begin{bmatrix} +1 & +2 & +1 & +8 \\ 0 & -3 & -3 & -15 \\ 0 & -1 & -3 & -11 \end{bmatrix} \begin{array}{c} R_1 \text{ and } R_2 \\ \text{do not} \\ \text{change.} \end{array}$

Phase 2: To get the next **1** in our diagonal, we use **Row Operation II** and multiply **R**₂ by -**1/3** (or divide by -**3**).

 $(-1/3) \bullet R_2 \rightarrow R_2 : [(-1/3)(0) = 0 \quad (-1/3)(-3) = 1 \quad (-1/3)(-3) = 1 \quad (-1/3)(-15) = 5]$

R 1	[+1	+2	+1	+8]	$-\frac{1}{2}R_2$	[+ 1	+2	+1	+ 8]	R_1 and R_3
R ₂	0	-3	-3	-15	$\xrightarrow{3}$	0	<mark>+1</mark>	<mark>+1</mark>	<mark>+5</mark>	do not
R 3	L 0	-1	-3	-11		L 0	-1	-3	-11	change.

Phase 3: We can get a couple more **0s** (in *R***₁ and ***R*₃) by using **Row Operation III** again.

 $(-2) \bullet R_2 + R_1 \rightarrow R_1 : [(-2)(0) + 1 = \frac{1}{1} (-2)(1) + 2 = \frac{0}{1} (-2)(1) + 1 = \frac{-1}{1} (-2)(5) + 8 = \frac{-2}{1}$

R 1	[+1	+2	+1	+8]	$\xrightarrow{-2R_2+R_1}$	[<mark>+1</mark>	0	<mark>-1</mark>	<mark>-2</mark>	R ₂ and R ₃
R ₂	0	+1	+1	+5	,	0	+1	+1	+5	do not
R 3	L 0	-1	-3	-11		L 0	-1	-3	-11	change.

This time, we can skip the multiplication—just add R_2 and R_3 and replace.

 $R_2 + R_3 \rightarrow R_3 : [0 + 0 = 0 \ 1 + -1 = 0 \ 1 + -3 = -2 \ 5 + -11 = -6]$

R 1	[+1	0	-1	ך 2–		[+1	0	-1	-2]	R ₁ and R ₂
R ₂	0	+1	+1	+5		0	+1	+1	+5	do not
R 3	L 0	-1	-3	-11	$\xrightarrow{R_2+R_3}$		0	<mark>-2</mark>	<mark>-6</mark>	change.

Phase 4: To get the last 1 we need to finish our diagonal, we use Row Operation II and multiply R₃ by -1/2 (or divide by -2).

 $(-1/2) \bullet R_3 \rightarrow R_3 : [(-1/2)(0) = \frac{0}{2} \quad (-1/2)(0) = \frac{0}{2} \quad (-1/2)(-2) = \frac{1}{2} \quad (-1/2)(-6) = \frac{3}{2}$

Solved! The solutions appear in the **fourth column**: *X* = 1, *Y* = 2, and *Z* = 3

[+ 1 .	+0	+0	+1]	= X
+0	+1	+0	+2	= Y
L+0	+0	+1	+3]	= Z

Don't forget to check your solutions . . .

(x+2y+z=8)	(1+2(2)+3=1+4+3=5+3=8)	۷
$\begin{cases} 2x + y - z = 1 \end{cases}$	2(1) + 2 - 3 = 2 + 2 - 3 = 4 - 3 = 1	۷
(x+y-2z=-3)	1+2-2(3) = 1+2-6 = 3-6 = -3	۷

If working with matrices looks like a lot of fun, you may enjoy the video <u>"Lecture 2: Elimination with Matrices,"</u> which is part of a Linear Algebra course at the <u>MIT Open Courseware</u> website.

Those who find this process a bit daunting may prefer to tackle matrices with a calculator. See tutorial #12 under Matrix Operations—<u>"Solving a System of Equations Using an Argument Matrix and Row</u> <u>Reduction</u>—at <u>calulator.maconstate.edu</u>.