How to Solve a System of Equations using the . . .

Using the nine coefficients and the three constants in the following system of equations . . .
$\left\{\begin{array}{l}x+2 y+z=8 \\ 2 x+y-z=1 \\ x+y-2 z=-3\end{array}\right.$

Work through a series of Row Operations to create a matrix of the following form:

$$
\left[\begin{array}{l}
+1+\mathbf{0}+\mathbf{0} \vdots \pm ? \\
+\mathbf{0}+1+\mathbf{0}+ \pm \\
+\mathbf{0}+\mathbf{0}+1
\end{array}\right]
$$

The final column will contain the three solutions.

The Format: Begin with all equations in STANDARD FROM ($\mathbf{A x}+\mathbf{B y}+\mathbf{C z}=\mathbf{D}$). Then, express the system as a matrix, called the ARGUMENT MATRIX.

The Rules: Consider the three basic ROW OPERATIONS (or mathematically "legal" procedures) you can use to achieve a matrix with a diagonal of 1s, and 0 s for all other coefficients:
I. SWITCH — Interchange any two rows.
II. MULTIPLY (or DIVIDE) the elements of any row by a nonzero number.
III. ADD \& REPLACE - Add a multiple of one row to a different row; then replace one of these rows with the result.

The Process: Although knowledge of formal methods for solving matrices is helpful (see Gaussian and Gauss-Jordan Elimination in "Solving Systems of Equations" at Paul's Online Math Notes, Lamar University), an intuitive application of row operations-as we demonstrate here-is often sufficient for simpler systems. In any case, working with matrices can be a tedious, error-prone process, so WRITE OUT ALL STEPS! *Note that there may be more than one sequence of steps to solve a given matrix.

Phase 1: Since \boldsymbol{R}_{1} begins with a 1, our diagonal is already started. To get $\mathbf{0}$ s at the beginning of $\mathbf{R}_{\mathbf{2}}$ and \mathbf{R}_{3}, we can use Row Operation III twice.
$(-2) \cdot R_{1}+R_{2} \rightarrow R_{2}:[(-2)(1)+2=0 \quad(-2)(2)+1=-3 \quad(-2)(1)+-1=-3 \quad(-2)(8)+1=-15]$
R_{1}
R_{2}
$R_{3}$$\left[\begin{array}{llll}+1 & +2 & +1 & +8 \\ +2 & +1 & -1 & +1 \\ +1 & +1 & -2 & -3\end{array}\right] \xrightarrow{-2 R_{1}+R_{2}}\left[\begin{array}{rccc}+1 & +2 & +1 & +8 \\ 0 & -3 & -3 & -15 \\ +1 & +1 & -2 & -3\end{array}\right] \begin{aligned} & R_{1} \text { and } R_{3} \\ & \text { do not } \\ & \text { change. }\end{aligned}$
$(-1) \cdot R_{1}+R_{3} \rightarrow R_{3}:[(-1)(1)+1=0 \quad(-1)(2)+1=-1 \quad(-1)(1)+-2=-3 \quad(-1)(8)+-3=-11]$
$\left.\begin{array}{l}R_{1} \\ R_{2} \\ R_{3}\end{array}\left[\begin{array}{r}+1 \\ 0\end{array}+2 \begin{array}{lll}-3 & -3 & -15 \\ +1 & +1 & -2\end{array}\right]-3\right] \xrightarrow{-1 R_{1}+R_{3}}\left[\begin{array}{rccc}+1 & +2 & +1 & +8 \\ 0 & -3 & -3 & -15 \\ 0 & -1 & -3 & -11\end{array}\right] \begin{aligned} & R_{1} \text { and } R_{2} \\ & \text { do not } \\ & \text { change. }\end{aligned}$
Phase 2: To get the next $\mathbf{1}$ in our diagonal, we use Row Operation II and multiply R_{2} by $-\mathbf{1 / 3}$ (or divide by -3).

$$
(-1 / 3) \bullet R_{2} \rightarrow R_{2}:[(-1 / 3)(0)=0 \quad(-1 / 3)(-3)=1 \quad(-1 / 3)(-3)=1 \quad(-1 / 3)(-15)=5]
$$

$$
\begin{aligned}
& R_{1} \\
& R_{2} \\
& R_{3}
\end{aligned}\left[\begin{array}{rrrr}
+1 & +2 & +1 & +8 \\
0 & -3 & -3 & -15 \\
0 & -1 & -3 & -11
\end{array}\right] \xrightarrow{-\frac{1}{3} R_{2}}\left[\begin{array}{rrrr}
+1 & +2 & +1 & +8 \\
0 & +1 & +1 & +5 \\
0 & -1 & -3 & -11
\end{array}\right] \begin{aligned}
& R_{1} \text { and } R_{3} \\
& \text { do not } \\
& \text { change. }
\end{aligned}
$$

Phase 3: We can get a couple more 0 s (in R_{1} and R_{3}) by using Row Operation III again.
$(-2) \bullet R_{2}+R_{1} \rightarrow R_{1}:[(-2)(0)+1=1 \quad(-2)(1)+2=0 \quad(-2)(1)+1=-1 \quad(-2)(5)+8=-2]$
R_{1}
R_{2}
$R_{3}$$\left[\begin{array}{rrrr}+1 & +2 & +1 & +8 \\ 0 & +1 & +1 & +5 \\ 0 & -1 & -3 & -11\end{array}\right] \xrightarrow{-2 R_{2}+R_{1}}\left[\begin{array}{rrrc}+1 & 0 & -1 & -2 \\ 0 & +1 & +1 & +5 \\ 0 & -1 & -3 & -11\end{array}\right] \begin{aligned} & R_{2} \text { and } R_{3} \\ & \text { do not } \\ & \text { change. }\end{aligned}$
This time, we can skip the multiplication-just add R_{2} and R_{3} and replace.

$$
\begin{aligned}
& R_{2}+R_{3} \rightarrow R_{3}:\left[\begin{array}{llll}
0+0=0 & 1+-1=0 & 1+-3=-2 & 5+-11=-6
\end{array}\right] \\
& R_{1} \\
& R_{2} \\
& R_{3}
\end{aligned}\left[\begin{array}{rrrr}
+1 & 0 & -1 & -2 \\
0 & +1 & +1 & +5 \\
0 & -1 & -3 & -11
\end{array}\right] \xrightarrow{R_{2}+R_{3}}\left[\begin{array}{rrrr}
+1 & 0 & -1 & -2 \\
\mathbf{0} & +1 & +1 & +5 \\
0 & 0 & -2 & -6
\end{array}\right] \begin{aligned}
& R_{1} \text { and } R_{2} \\
& \text { do not } \\
& \text { change. }
\end{aligned}
$$

Phase 4: To get the last 1 we need to finish our diagonal, we use Row Operation II and multiply R_{3} by $-1 / 2$ (or divide by -2).

$$
(-1 / 2) \cdot R_{3} \rightarrow R_{3}:[(-1 / 2)(0)=0 \quad(-1 / 2)(0)=0 \quad(-1 / 2)(-2)=1 \quad(-1 / 2)(-6)=3]
$$

R_{1}
R_{2}
R_{3}\(\left[$$
\begin{array}{rrrr}+\mathbf{1} & \mathbf{0} & \mathbf{- 1} & -\mathbf{2} \\
\mathbf{0} & \mathbf{+ 1} & \mathbf{+ 1} & +\mathbf{5} \\
\mathbf{0} & \mathbf{0} & \mathbf{- 2} & -\mathbf{6}\end{array}
$$\right] \xrightarrow{-\frac{\mathbf{1}}{2} R_{3}}\left[\begin{array}{rrrr}+\mathbf{1} \& \mathbf{0} \& \mathbf{- 1} \& \mathbf{- 2}

\mathbf{0} \& \mathbf{+ 1} \& \mathbf{+ 1} \& +\mathbf{5}

\mathbf{0} \& \mathbf{0} \& \mathbf{+ 1} \& +3\end{array}\right]\)| R_{1} and R_{2} |
| :--- |
| do not |
| change. |

Phase 5: We can get the last two $\mathbf{0}$ s we need (in R_{1} and R_{2}) by applying Row Operation III once again.

$$
R_{3}+R_{1} \rightarrow R_{1}:\left[\begin{array}{llll}
0+1=1 & 0+0=0 & 1+-1=0 & 3+-2=1
\end{array}\right]
$$

$$
\begin{aligned}
& \begin{array}{l}
R_{1} \\
R_{2} \\
R_{3}
\end{array}\left[\begin{array}{rrrr}
+\mathbf{1} & \mathbf{0} & \mathbf{- 1} & -\mathbf{2} \\
\mathbf{0} & \mathbf{+ 1} & \mathbf{+ 1} & +\mathbf{5} \\
\mathbf{0} & \mathbf{0} & \mathbf{+ 1} & \mathbf{+ 3}
\end{array}\right] \xrightarrow{R_{3}+R_{1}}\left[\begin{array}{rrrr}
+\mathbf{1} & \mathbf{0} & \mathbf{0} & +\mathbf{1} \\
\mathbf{0} & \mathbf{+ 1} & \mathbf{+ 1} & +\mathbf{5} \\
\mathbf{0} & \mathbf{0} & \mathbf{+ 1} & \mathbf{+ 3}
\end{array}\right] \begin{array}{l}
R_{2} \text { and } R_{3} \\
\text { do not } \\
\text { change. }
\end{array} \\
& (-1) \cdot R_{3}+R_{2} \rightarrow R_{2}:[(-1)(0)+0=0 \quad(-1)(0)+1=1 \quad(-1)(1)+1=0 \quad(-1)(3)+5=2]
\end{aligned}
$$

Solved!
The solutions appear in the fourth column: $X=1, Y=2$, and $Z=3$

$$
\left[\begin{array}{ccc:c}
+1 & +0 & +0 & +1 \\
+0 & +1 & +0 & +2 \\
+0 & +0 & +1 & +3
\end{array}\right]=Y
$$

Don't forget to check your solutions . . .

$\left\{\begin{array}{l}x+2 y+z=8 \\ 2 x+y-z=1 \\ x+y-2 z=-3\end{array}\left\{\begin{array}{l}1+2(2)+3=1+4+3=5+3=8 \\ 2(1)+2-3=2+2-3=4-3=1 \\ 1+2-2(3)=1+2-6=3-6=-3\end{array}\right.\right.$
If working with matrices looks like a lot of fun, you may enjoy the video "Lecture 2: Elimination with Matrices," which is part of a Linear Algebra course at the MIT Open Courseware website.

Those who find this process a bit daunting may prefer to tackle matrices with a calculator.
See tutorial \#12 under Matrix Operations-"Solving a System of Equations Using an Argument Matrix and Row Reduction"-at calulator.maconstate.edu.

