Strategy for Graphing Rational Functions

We follow these steps to graph the rational function $f(x)=\frac{P(x)}{Q(x)}$, where $P(x)$ and $Q(x)$ are polynomials written in descending powers of x and $\frac{P(x)}{Q(x)}$ is in simplest form.

1. Check for Symmetry. If $P(x)$ and $Q(x)$ involve only even powers of x , or if $f(x)=f(-x)$, the graph is symmetric about the y -axis. Check for symmetry about the origin.
2. Look for vertical asymptotes. The real roots of $Q(x)=0$, if any, determine the vertical asymptotes of the graph.
3. Look for the \mathbf{y} - and x -intercepts. Let $x=0$. The resulting value of y , if any, is the y-intercept of the graph. The real roots of $P(x)=0$, if any, are the x-intercepts of the graph.
4. Look for horizontal asymptotes.

- If the degree of $P(x)$ is less than the degree of $Q(x)$, the line $y=0$ is the horizontal asymptote.
- If the degrees of $P(x)$ and $Q(x)$ are equal, the $y=\frac{p}{q}$, where p and q are the lead coefficients of $P(x)$ and $Q(x)$, is a horizontal asymptote.
- If the degree of $P(x)$ is greater than the degree of $Q(x)$, there is no horizontal asymptote.

5. Look for slant asymptotes. If the degree of $P(x)$ is 1 greater than the degree of $Q(x)$, there is a slant asymptote. To find it, divide $P(x)$ by $Q(x)$ and ignore the remainder.

Quoted from: David Gustafson and Peter Frisk, College Algebra, (8 ${ }^{\text {th }}$ ed. Pacific Grove, CA: Brooks/Coe—Thomas Learning, 2004), p. 285.

See the Rational Functions Graphing
Aid on the next page of this handout.

To graph a rational function, find the following:
Symmetry: x-axis y-axis
origin
X-intercepts \qquad
Y-intercepts \qquad
Vertical asymptotes \qquad
Horizontal asymptotes \qquad
Slant asymptotes \qquad
Extra Points \qquad

