Converting Repeating Decimals to Fractions

The "Multiply by $10^{\text {n }}$, Stack - Subtract - Solve - Simplify" Method

Step 1: Let x equal the repeating decimal number. This step creates an equation, $x=$ original decimal number.

Example 1	Example 2
$\mathbf{x}=0.55555 \ldots$	$\mathbf{x}=-1.04242424242 \ldots$

Step 2: Identify the repeating digit(s) in the decimal number.
The repeating digit is 5 .
The repeating digits are 42.
Step 3: Multiply this equation by a power of 10 to move the repeating digits to the LEFT of the decimal point. This step creates a second equation, $10^{n}=2^{\text {nd }}$ decimal number.
To move one decimal place, multiply by 10^{1} (10). \quad To move three decimal places, multiply by 10^{3} (1000).

$$
10 x=5.55555 \ldots
$$

$$
1000 x=-1042.4242424242 \ldots
$$

Step 4: Look at the original decimal number (from step 1). If the repeating digits aren't already immediately to the RIGHT of the decimal point, multiply the second equation by another power of 10 to achieve this. This step creates a third equation, $10^{n+?}=3^{\text {rd }}$ decimal number.

The repeating digit in the step 1 equation is already to the right: $x=0.55555$. . .

A zero is immediately to the right of the decimal point:

$$
\begin{gathered}
x=-1.04242424242 \ldots \\
\text { So, multiply by } 10^{1}(10) . \\
10 x=-10.4242424242 \ldots
\end{gathered}
$$

Step 5: Stack the $2^{\text {nd }}$ and 1 st—or $2^{\text {nd }}$ and $3^{\text {rd }}$-equations (make sure to align the decimal points), and then Subtract the left sides of each and the right sides of each. The resulting difference is a new equation. Subtraction eliminates the repeating digits!

$10 \mathrm{x}=5.55555 \ldots$	$\mathbf{1 0 0 0 x}=\mathbf{- 1 0 4 2 . 4 2 4 2 4 2 4 2 4 2 \ldots}$	Subtraction changes the sign of
$-\mathbf{x}=\mathbf{0 . 5 5 5 5 5 \ldots}$	$-10 \mathrm{x}=-(-10.4242424242 \ldots)$ $9 \mathrm{x}=5$	-10.4242 \ldots to positive.

Step 6: Solve the new equation for x. The result will be a fraction (or ratio of integers) . . . but you're not quite done.

Divide each side by 9 to isolate x.	$\frac{9 x}{9}=\underline{5}$				
x	$=5 / 9$	$\underline{990 x}$	$=\frac{-1032}{990}$	\quad	Divide each side by 990
:---					
to isolate x.					

Step 7: Simply the fraction if it's not already in lowest terms. Now you're done!

$$
\begin{array}{c|cl}
5 / 9 \text { is already in lowest terms. } & -1032 / 990=-516 / 495 & \begin{array}{l}
\text { Both the numerator } \\
\text { and denominator }
\end{array} \\
0.55555 \ldots=5 / 9 & -1.424242 \ldots=-516 / 495 & \begin{array}{l}
\text { are divisible by } 2 .
\end{array}
\end{array}
$$

Adapted from "Converting Repeating Decimals to Fractions" at Basic-mathematics.com.
See next side of this sheet for more about converting repeating decimals to fractions.

Another Way to Convert Repeating Decimals to Fractions

This method may be useful when the repeating digits start several decimal places behind the decimal point.
Step 1: Break down the repeating decimal by expressing it as a sum of fractions, with the repeating portion at the end (use place values to figure this out). You do this in order to isolate the repeating part.

Example

$$
1.873535 \ldots=1 / 1+87 / 100+0.003535 \ldots \quad \text { Note that the whole number } 1=1 / 1
$$

Step 2: Focus only on the repeating portion of the sum (ignore the rest). Let $\mathbf{x}=$ the repeating portion. Multiply this equation by a power of $\mathbf{1 0}$ to move the repeating digits immediately to the LEFT of the decimal point (in other words, to eliminate any zeros preceding the repeating digits).

$$
\begin{aligned}
x & =0.003535 \ldots \\
100 x & =0.353535 \ldots
\end{aligned}
$$

Step 3: Express this new repeating decimal number as a sum in order to isolate the repeating part (refer to step 1).

$$
100 x=35 / 100+0.003535 \ldots
$$

Step 4: Recall that $\mathbf{x}=0.003535 \ldots$, so you can replace this part with x in the equation above.

$$
100 x=35 / 100+x
$$

Step 5: Solve for x . This step should yield the repeating portion expressed as a fraction.

$$
\begin{array}{rrrr}
100 \mathrm{x}=35 / 100+\mathbf{x} & \text { Divide each side by } 99 \text { (or multiply by } 1 / 99 \text {). } & \text { Now } 0.003535 \ldots \text { is a fraction! } \\
\frac{-\mathbf{x}}{\mathbf{9 9 x}=\mathbf{x} / \mathbf{x}} & \mathbf{9 9 x} * \mathbf{1 / 9 9}=\mathbf{3 5 / 1 0 0} * \mathbf{1 / 9 9} & \mathbf{x}=\mathbf{3 5 / 9 9 0 0}
\end{array}
$$

Step 6: In the sum from step 1, replace the repeating decimal portion with its fractional equivalent.

$$
1.873535 \ldots=1 / 1+87 / 100+35 / 9900
$$

Step 7: Now that each element of the sum is a fraction, it's time to re-build by adding the fractions together. Make sure to use a common denominator. Reduce if needed.

$$
\begin{array}{rll}
1.873535 \ldots=9900 / 9900+8613 / 9900+35 / 9900 & =18548 / 9900=4637 / 2475 & \begin{array}{l}
\text { Both the numerator and } \\
\text { denominator are divisible }
\end{array} \\
1.873535 \ldots=4637 / 2475 & \text { by } 4 .
\end{array}
$$

