Real Number Chart

Q stands for "quotient."

LSC-O Learning Center (409) 882-3373
 Ron E. Lewis Library building, rm. 113

Irrational Numbers

All Real Numbers that are NOT Rational Numbers; cannot be expressed as fractions, only non-repeating, non-terminating decimals

$$
-\sqrt{2},-\sqrt[3]{5}, \sqrt{21}, \sqrt[3]{81}, \sqrt{101}, \pi, e, \varphi
$$

*Even roots (such as square roots) that don't simplify to whole numbers are irrational. *Odd roots (such as cube roots) that don't simplify to whole numbers are irrational.

* Pi (π), Euler's number (e), and the Golden Ratio (φ) are irrational.

\mathbb{R}
 Real Numbers

Includes all Rational and Irrational Numbers

$$
-\frac{3}{5},-1,0,1, \sqrt{2}, \pi, 6.35,273
$$

Rational Numbers

Can be expressed as a ratio of two Integers: $\mathrm{a} / \mathrm{b},(\mathrm{b} \neq 0)$; such ratios (fractions) can be expressed as terminating or repeating decimals

$$
-6,-\frac{1}{3}(-0.333 \ldots), 0, \frac{3}{4}(0.75), 25
$$

* Some roots are rational: $\sqrt{100}=10, \sqrt[3]{8}=2$

Non-Integer Rational Numbers

Fractions, terminating and repeating decimals

$$
-\frac{1}{2}(-0.5), \frac{9}{11}(0.8181 \ldots), \frac{13}{10}(1.3)
$$

Non-Integer Rational Numbers
Fractions, terminating and repeating decimals
$-\frac{1}{2}(-0.5), \frac{9}{11}(0.8181 \ldots), \frac{13}{10}(1.3)$

Find this and other math resources on the LSC-O Learning Center Math Tutorials page.

\mathbb{N}

Natural Numbers
Counting Numbers
$1,2,3, \ldots, 476, \ldots$

