Relationship between Logarithmic Functions \& Exponential functions

DEFINITION: A logarithm is the inverse of an exponential function.
EXAMPLE: Given: $\quad f(x)=y=3^{x}$
Find: \quad Inverse of $f(x)$ or $f^{-1}(x)$
Solution: $\quad \boldsymbol{x}=\mathbf{3}^{\boldsymbol{y}}$
How do you solve for y? Use a logarithmic function: $f^{-1}(x)=y=\log _{3} x$
Solving logarithmic functions: To solve logarithmic functions, one needs to know the following relationship between exponents and logarithms.

$$
\begin{array}{llll}
\text { FORMULAS: } & a^{y}=x & \Leftrightarrow & y=\log _{a} x \\
\text { EXAMPLES: } & 10^{2}=100 & \Leftrightarrow & 2=\log _{10} 100
\end{array}
$$

The rules for simplifying and manipulating logarithmic expressions somewhat resemble the rules for exponents.

Operation	Laws of Exponents	Laws of Logarithms
Identity	$\begin{aligned} & a^{n}=a^{z} \\ & \quad \text { so } n=z \end{aligned}$	$\begin{gathered} \log _{b} x=\log _{b} y \\ \text { so } x=y \end{gathered}$
Identity	$x^{1}=x$	$\begin{gathered} \log _{b} b=1\left(\text { or } \log _{b} b^{1}=1\right) \\ \text { so } \log _{b} b^{x}=x \end{gathered}$
Division \leftrightarrow Subtraction	$\frac{x^{n}}{x^{z}}=x^{n}-x^{z}$	$\log _{b}\left(\frac{x}{y}\right)=\log _{b} x-\log _{b} y$
Multiplication \leftrightarrow Addition	$x^{n} * x^{z}=x^{n+z}$	$\log _{b}(x * y)=\log _{b} x+\log _{b} y$
Power of a Power (proved by Addition)	$\left(x^{n}\right)^{3}=x^{3 * n}=x^{3 n}$ Proof: $\begin{aligned} \left(x^{n}\right)^{3} & =x^{n} * x^{n} * x^{n} \\ & =x^{n+n+n} \\ & =x^{3 n} \end{aligned}$	$\log _{b}\left(y^{1}\right)^{3}=3 * \log _{b} y^{1}=3 \log _{b} y$ Proof: $\begin{aligned} & \log _{b}\left(y^{1}\right)^{3}=\log _{b}(y * y * y) \\ & =\log _{b} y+\log _{b} y+\log _{b} y \\ & =3 \log _{b} y \end{aligned}$

The Change of base formula is useful because some calculators can only compute logarithms of base 10 (the common logarithm, often written simply as \log) or base e (the natural log, $l n$, for which base e is understood).

$$
\log _{b} y=\frac{\log _{10} y}{\log _{10} b}\left(\text { also } \frac{\log y}{\log b}\right) \text { or } \frac{\ln y}{\ln b}
$$

