

Relationship between Logarithmic Functions & Exponential Functions

DEFINITION: A logarithm is the inverse of an exponential function.

EXAMPLE:Given: $f(x) = y = 3^x$ Find:Inverse of f(x) or $f^{-1}(x)$ Solution: $x = 3^y$

How do you solve for y? Use a logarithmic function: $f^{-1}(x) = y = \log_3 x$

Solving logarithmic functions: To solve logarithmic functions, one needs to know the following relationship between exponents and logarithms.

FORMULAS: $a^y = x \iff y = \log_a x$ EXAMPLES: $10^2 = 100 \iff 2 = \log_{10} 100$

The rules for simplifying and manipulating logarithmic expressions somewhat resemble the rules for exponents.

Operation	Laws of Exponents	Laws of Logarithms
Identity	$a^n = a^z$ so $n = z$	$log_b x = log_b y$ so $x = y$
Identity	$x^1 = x$	$log_b b = 1 \text{ (or } log_b b^1 = 1\text{)}$ so $log_b b^x = x$
Division \leftrightarrow Subtraction	$\frac{x^n}{x^z} = x^n - x^z$	$\log_b\left(\frac{x}{y}\right) = \log_b x - \log_b y$
$Multiplication \leftrightarrow Addition$	$x^n * x^z = x^{n+z}$	$log_b(x * y) = log_b x + log_b y$
Power of a Power (proved by <mark>Addition</mark>)	$(x^{n})^{3} = x^{3*n} = x^{3n}$ $\xrightarrow{\text{Proof:}} (x^{n})^{3} = x^{n} * x^{n} * x^{n}$ $= x^{n+n+n}$ $= x^{3n}$	

The **Change of base formula** is useful because some calculators can only compute logarithms of base 10 (the common logarithm, often written simply as *log*) or base *e* (the natural log, *ln*, for which base *e* is understood).

$$\log_{b} y = \frac{\log_{10} y}{\log_{10} b} \left(\text{also } \frac{\log y}{\log b} \right) \text{ or } \frac{\ln y}{\ln b}$$

Find handouts and links to other math resources at <u>http://www.lsco.edu/learningcenter/math.asp</u> The Learning Center @ LSC-O, Ron E. Lewis Library building, room 113, **409-882-3373**